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Why scalability is important in programming depth:0

visualizations: Within program visualizations:
e Debugging usually involves large inputs
e Visualizations must be able to handle

significantly large inputs to be effective

(1,70)

HYPOTHESIS “Scalability ~ Sliceability” | RESEARCH PHASES

The effectiveness of visualizations is
determined by how well they can scale
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PHASE 2

Use codebook of taxonomy from phase 1 to answer the
question: “Are visualizations composed of simpler basic
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Sub-hypothesis: It is possible to group all programming visualizations into a finite number of
categories (codebook).
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Studied visualizations across 2 levels of abstraction: Literal Visualization and Abstract interpretation. ' e Codebook got to a level of saturation after 80 examples and could

List Tree Graph Set weg describe every further visualization found
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hierarchy, torch_functions, shapes, and tensor data recorded were preferred When pOSS|b|e___ prOm|S|ng Of S||Ceab|||ty

during a forward prop. Note: TensorNodes saved in
NodeContainer(s); graph

CONCLUSION/RESULTS

e When used in the restructuring of visualizations, sliceability’s
predictive power can lend itself to constructive applications:
o Education
o Debugging
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Collected 150 (mechanically generated) examples across 7 domains: Machine Learning, Graphics,
Web Dev, Game Dev, Video, Animation, and Compilers.
o Verified they were mechanically generated by looking at their source code
Categorically coded examples as some composition of 4 primary visualization structures: sets, lists,
trees, and graphs.
Incorporated compositional operators into our codebook to describe the relationship between parts of
a visualization that had different basic structures. These included: {——
o Sequential operator (—>) ] e FUTURE WORK: PHASE 2
o Parallel operator (+) e

Codebook iteratively updated to fit new data until reaching a point of saturation . ] _ N _ 9 e if deb
Operators allowed to describe the literal visualization and abstract interpretation uniformly, growing . e Design a game theory experiment to determine It debuggers

them towards each other, thus creating a comprehensive codebook describing both. debug more efficiently with visualizations composed of simpler
o Examples: —— basic structures
s e Interview creators of debugging tools to glean into inherent
applications of sliceability employed by same
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BACKGROUND

Research Question: What makes program visualizations effective?

Limitations of previous work:
o Little focus on scalability
o Pivotal to our predictive theory about visualization interpretability
e Focus on surface-level features
o Features that do not get at generalizable underlying properties
e Small sample of visualizations
o Spanning across a single or few domains

Table 4: Assessing the “Form” of the Systems JAIN ET AL

(3) FORM | Color | Dimensions | Animations | Sound | Granularity | Multiple Program
Views Svnchronization

Why scalability is important in programming

visualizations: Within program visualizations:

e Debugging usually involves large inputs
e Visualizations must be able to handle
significantly large inputs to be effective P
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The effectiveness of visualizations is
determined by how well they can scale
for significantly large inputs.

Goal: Measure scalability, and thus,
effectiveness of program visualizations
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Why does this visualization scale well?

PROGRAM

Torchview

Description: graphviz.Digraph object populated with module
hierarchy, torch_functions, shapes, and tensor data recorded
during a forward prop. Note: TensorNodes saved in
NodeContainer(s); graph

Dependency-Cruiser

Description: buildGraphAttributes,
buildNodeAttributes, and buildEdgeAttributes
are used to generate DOT snippets from nested
object structures (that were generated by
dependency-cruiser) representing modules,
their dependencies, and additional
information; graph.

B. A. PRICE ET AL.

\ A.1.3.1
A.1.3 Languagjr{ C y J
A.1.4 Applicalﬂ—p.l.d.l Specialty l

Olohi John, Joel Castro »

_-======THE THEORY OF SLICEABILITY

s’

¢

Why doesn’t this visualization scale well?

VISUALIZATION
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HYPOTHESIS “Scalability ~ Sliceability” METHODOLOGY
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N_, List Tree Graph Set
The sliceability of a visualization is an approximate @
measure of its scalability. Generally, the higher the

complexity of an analyzed visualization's structure, _
the lower the visualization's sliceability and, Visualizations are studied along 3 levels of abstraction: Underlying
consequently, the less its scalability. i program, literal visualization, and cognitive interpretation.
q e Collected 150 examples across 7 domains: Machine Learning, Graphics,
’ Web Dev, Game Dev, Video, Animation, and Compilers.
e Examples are categorically coded as some composition of 4 primary
Codes C == List of C|Tree of C|...|C+C|C—C visualization structures: sets, lists, trees, and graphs.
e Analyze changes in abstraction across each level, looking for patterns
that show markers of sliceability.

PROGRAM VISUALIZATIONS

SLICEABILITY OUTSIDE OF
,,_) PRELIMINARY RESULTS ®

Among coded examples...

e About 55% of visualizations show some form of
reduction in complexity across the vis-human gap.

e Structure transformation across program-vis gap
(Program - Vis: count):
o Graphs - Graphs/DAGs: 2; Trees: 1
o Tables - Graphs: 7
o Dictionaries - Graphs: 7; Trees: 3; Lists: 1
o Lists - Trees: 2; Lists: 1

Statistical Visualizations

CONCLUSION Mathematical Visualizations

Preliminary results are promising of sliceability
While used in the restructuring of visualizations,

sliceability’s predictive power can lend itself to

s,,m,,e,) constructive applications:
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o Debugging

FUTURE WORK

A Directed Acyclic Graph (DAG)

Eye Tracking Study
o Do reading patterns corroborate coded human-cognitive

models?
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Visualization tool developer interview study HEEEEEN
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o |Is sliceability implicitly considered in the development of - B EEEE O
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visualization tools?
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