SPLASH Conference Version
Vo UNDERSTANDING PROGRAMVISUALIZATIONSINTHEWILD

Olohi John, Joel Castro

BACKGROUND _-====="%THE THEORY OF SLICEABILITY

s’

Research Question: What makes program visualizations effective? B. A PRICE ET AL Y 4

input-tenso

== . . , ,10
Limitations of previous work: e nputensor | 1 1 depth:0 1(‘ iy

o Little focus on scalability

° ege . . . S I Tower | | Tower | 1 Teyer | l
o Pivotal to our predictive theory about visualization interpretability . SI Icea bl I Ity' Th e ea Se Wlth Wh I Ch th e Iocal — == ‘/, = v i yLineas | 0Pt | 1,10 H yLincar | 1Pt | (1,10 §i Linear | input: | 1,10 i / input: | (1,10)

e Focus on surface-level features 1.3 Language oupa: | .10 : Jao wput: | 1,10 L o Ja0 H — e 0 H o Jo0 : .:
o Features that do not get at generalizable underlying properties p I eces that ma ke u p a VI Sua I Izatl O n Ca n be i —t H —t— gi —t—— i A A

e Small sample of visualizations

o Spanning across a single or few domains ” |dent|f|ed and used tO underStand the To [: K EE L E; e E 2x(1,10)

(1,10)

’ whole structure. The theory aims to el [frweon] (B e L Lo} [ool \
(3) FORM |Color |D1mensions Animations |Sound |Granu1arity Multiple | Program | |
Views Svnchronization

Table 4: Assessing the “Form” of the Systems

2x(1,10)

understand visualizations as compositions
of simpler structures. = .

output-tensol

Why scalability is important in programming depth:0

visualizations: Within program visualizations:
e Debugging usually involves large inputs
e Visualizations must be able to handle

significantly large inputs to be effective

(1,70)

HYPOTHESIS “Scalability ~ Sliceability” | RESEARCH PHASES

The effectiveness of visualizations is
determined by how well they can scale

J
] II
min . - , The sliceability of a visualization is an approximate g PHASE 1
for significantly large inputs. | [: =) | . - .
IR [XIEEELITE eI, EIne] Ui ,' = | measure of its scalability. Generally, the higher the T Develop visualizations’ complexity hierarchy and
, = 'A‘
J

effectiveness of program visualizations
complexity of an analyzed visualization's structure, . descriptive taxonomy
\ .

\\ ' Why does this visualization scale well? Whgdoesn’thisvisualizationscalewell? the |OW€I’ the VISLIa|IzatIOI"I'S SI|Ceab|||ty al"ld,
S o’ consequently, the less its scalability.
S omm-

PHASE 2

Use codebook of taxonomy from phase 1 to answer the
question: “Are visualizations composed of simpler basic

‘lll ‘lll
PHASE 1 ‘ - DL T—— stuctures more scalable, and thus, more effective?”

~~—

N
N

Sub-hypothesis: It is possible to group all programming visualizations into a finite number of
categories (codebook).

kwia
de_hierarchy,
}
sel ect_graph, **kwargs)
putationGraph(
g es, show shapes, expand nested, ren
hide_inner_tensers, h s the > 1ist""”
ist:
il.node_id], s dict[head.node_id]
forward prop et(edge_id, 2) + 1
" - - - ge_id])
M ET H O D O LO G Y model, input_recofder_tensor, device,
model mode, **Kwargs_record_tensor traverse_g
. calf padd e Lo =21 L Rl o] okl e o AL
)

Studied visualizations across 2 levels of abstraction: Literal Visualization and Abstract interpretation. ' e Codebook got to a level of saturation after 80 examples and could

List Tree Graph Set weg describe every further visualization found
ﬁ. @ " . . _ e |n many cases, structures composed of simpler primary compositions
D?scr1pt1on: graphv1z.?1graph object populated with module . oo . o
hierarchy, torch_functions, shapes, and tensor data recorded were preferred When pOSS|b|e___ prOm|S|ng Of S||Ceab|||ty

during a forward prop. Note: TensorNodes saved in
NodeContainer(s); graph

CONCLUSION/RESULTS

e When used in the restructuring of visualizations, sliceability’s
predictive power can lend itself to constructive applications:
o Education
o Debugging

- 3,224, 224) I

Collected 150 (mechanically generated) examples across 7 domains: Machine Learning, Graphics,
Web Dev, Game Dev, Video, Animation, and Compilers.
o Verified they were mechanically generated by looking at their source code
Categorically coded examples as some composition of 4 primary visualization structures: sets, lists,
trees, and graphs.
Incorporated compositional operators into our codebook to describe the relationship between parts of
a visualization that had different basic structures. These included: {——
o Sequential operator (—>)] e FUTURE WORK: PHASE 2
o Parallel operator (+) e

Codebook iteratively updated to fit new data until reaching a point of saturation .] _ N _ 9 e if deb
Operators allowed to describe the literal visualization and abstract interpretation uniformly, growing . e Design a game theory experiment to determine It debuggers

them towards each other, thus creating a comprehensive codebook describing both. debug more efficiently with visualizations composed of simpler
o Examples: —— basic structures
s e Interview creators of debugging tools to glean into inherent
applications of sliceability employed by same

-
—

]
] ~
e ‘
L d
a|*
™

Al

PRL L
P
= 8le '

8" 2le =

i

%5

Joel Castro
Text Box
SPLASH Conference Version

REUSE REU Version

University

UNDERSTANDING PROGRAM VISUALIZATIONS IN THE WILD (N

BACKGROUND

Research Question: What makes program visualizations effective?

Limitations of previous work:
o Little focus on scalability
o Pivotal to our predictive theory about visualization interpretability
e Focus on surface-level features
o Features that do not get at generalizable underlying properties
e Small sample of visualizations
o Spanning across a single or few domains

Table 4: Assessing the “Form” of the Systems JAIN ET AL

(3) FORM | Color | Dimensions | Animations | Sound | Granularity | Multiple Program
Views Svnchronization

Why scalability is important in programming

visualizations: Within program visualizations:

e Debugging usually involves large inputs
e Visualizations must be able to handle
significantly large inputs to be effective P

4

The effectiveness of visualizations is
determined by how well they can scale
for significantly large inputs.

Goal: Measure scalability, and thus,
effectiveness of program visualizations

/4

]

I
I
I
I
]

]

Why does this visualization scale well?

PROGRAM

Torchview

Description: graphviz.Digraph object populated with module
hierarchy, torch_functions, shapes, and tensor data recorded
during a forward prop. Note: TensorNodes saved in
NodeContainer(s); graph

Dependency-Cruiser

Description: buildGraphAttributes,
buildNodeAttributes, and buildEdgeAttributes
are used to generate DOT snippets from nested
object structures (that were generated by
dependency-cruiser) representing modules,
their dependencies, and additional
information; graph.

B. A. PRICE ET AL.

\ A.1.3.1
A.1.3 Languagjr{ C y J
A.1.4 Applicalﬂ—p.l.d.l Specialty l

Olohi John, Joel Castro »

_-======THE THEORY OF SLICEABILITY

s’

¢

Why doesn’t this visualization scale well?

VISUALIZATION

input-tenso
depth:0 1 (1.10)

Sliceability: The ease with which the local P B i A '
pieces that make up a visualization can be R S N WY
identified and used to understand the | ([e I R

(1,170)

output: | (1, 10)

input: | (1,10)

whole structure. The theory aims to e o Ton] [% e el e AN

understand visualizations as compositions = ==l o] {5 e fun]

of simpler structures. Y S IS l

output: (1,10)

l depth:0

t S
output-tensor z (1,10)
depth:0

HYPOTHESIS “Scalability ~ Sliceability” METHODOLOGY
5

N_, List Tree Graph Set
The sliceability of a visualization is an approximate @
measure of its scalability. Generally, the higher the

complexity of an analyzed visualization's structure, _
the lower the visualization's sliceability and, Visualizations are studied along 3 levels of abstraction: Underlying
consequently, the less its scalability. i program, literal visualization, and cognitive interpretation.
q e Collected 150 examples across 7 domains: Machine Learning, Graphics,
’ Web Dev, Game Dev, Video, Animation, and Compilers.
e Examples are categorically coded as some composition of 4 primary
Codes C == List of C|Tree of C|...|C+C|C—C visualization structures: sets, lists, trees, and graphs.
e Analyze changes in abstraction across each level, looking for patterns
that show markers of sliceability.

PROGRAM VISUALIZATIONS

SLICEABILITY OUTSIDE OF
,,_) PRELIMINARY RESULTS ®

Among coded examples...

e About 55% of visualizations show some form of
reduction in complexity across the vis-human gap.

e Structure transformation across program-vis gap
(Program - Vis: count):
o Graphs - Graphs/DAGs: 2; Trees: 1
o Tables - Graphs: 7
o Dictionaries - Graphs: 7; Trees: 3; Lists: 1
o Lists - Trees: 2; Lists: 1

Statistical Visualizations

CONCLUSION Mathematical Visualizations

Preliminary results are promising of sliceability
While used in the restructuring of visualizations,

sliceability’s predictive power can lend itself to

s,,m,,e,) constructive applications:
(@dexis)y o Education

index.js F—

positions.js

o Debugging

FUTURE WORK

A Directed Acyclic Graph (DAG)

Eye Tracking Study
o Do reading patterns corroborate coded human-cognitive

models?
EEEEEN

Visualization tool developer interview study HEEEEEN

. e e . . HEEEEEN

o |Is sliceability implicitly considered in the development of - B EEEE O
N . .

visualization tools?

Joel Castro
Text Box
REUSE REU Version

